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Abstract

A very efficient, chiral phase-transfer catalyst (S)-2Db was prepared by taking advantage of the combinatorial approach from the
known, easily available (S)-1,10-binaphthyl-2,20-dicarboxylic acid. This catalyst exhibited the high catalytic performance (0.01–
0.1 mol %) in the asymmetric alkylation of N-(diphenylmethylene)glycine tert-butyl ester compared to the existing chiral phase-transfer
catalysts, thereby allowing to realize a general and useful procedure for highly practical enantioselective synthesis of structurally diverse
natural and unnatural a-alkyl-a-amino acids.
� 2008 Elsevier Ltd. All rights reserved.
Development of truly efficient methods in organic syn-
thesis, especially in an enantiomerically pure form, has
become of great importance. However, despite their
numerous studies only a few catalytic systems have been
reported in asymmetric phase-transfer chemistry with
limited general applicability.1 In this context, though we
recently designed new, chiral spiro-type (R,R)- or (S,S)-
3,4,5-trifluorophenyl-NAS bromide (S,S)-1 (Ar = 3,4,5-
F3–C6H2)2 for effecting asymmetric alkylation of a-amino
acid derivatives,3,4 the multi-step [5 steps for right-hand
(S)-3,5-dihydro-4H-dinaphth[2,1-c:1020-e]azepine from (S)-
binaphthol; 11 more steps from (S)-binaphthol] pre-
paration of such spiro-type catalyst 1 constitutes severe
drawback, and the simplification of catalyst 1 is crucially
important to overcome the intrinsic problem in the chiral
phase-transfer process chemistry.

To simplify the structure of the original catalyst (S,S)-1,
we chose a basic structure of type 2 as a simplified chiral
phase-transfer catalyst. Since the catalyst (S)-2 can be read-
ily prepared from three components, that is, a chiral
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binaphthyl part (S)-3, an arylboronic acid (ArB(OH)2),
and a secondary amine (R2NH) as described previously,5

the appropriate modification of ArB(OH)2 and R2NH
parts should give a series of newly designed catalysts.
Hence, we began to study the substituent effect of Ar and
R moieties in detail by using combinatorial chemistry, since
variation of the substituents Ar and R would allow the
facile generation of large libraries of structures.
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oxylic acid (S)-46 in 6-step sequence as outlined in Scheme
1.7 Thus, (S)-dicarboxylic acid (S)-4 was transformed with
i-PrBr, catalytic Bu4N�HSO4, and KF�2H2O to the corres-
ponding diisopropyl ester (S)-5 in 95% yield. Treatment of
(S)-5 with freshly prepared Mg(TMP)2 in THF and subse-
quent addition of Br2 gave rise to (S)-3,30-dibromo-1,10-
binaphthyl-2,20-dicarboxylic ester (S)-3 in 91% yield.
Suzuki–Miyaura cross coupling of (S)-3 with arylboronic
acid, ArB(OH)2 (Ar = Ph, 3,5-(CF3)2–C6H3, 3,4,5-F3–
C6H2) in the presence of catalytic Pd(OAc)2, PPh3, and
K2CO3 in DMF afforded (S)-3,30-diaryl-1,10-binaphthyl-
2,20-dicarboxylic ester (S)-6 in 57–68% yields. Reduction
of (S)-6 with LiAlH4 in THF and subsequent treatment
of the resulting crude alcohol (S)-7 with PBr3 in THF
furnished (S)-dibromide (S)-8 in moderate to high yields.
Reaction of (S)-8 with dialkylamine and K2CO3 in aceto-
nitrile led to the formation of catalysts (S)-2Aa–Di in high
yields.

To examine the substituent effect of catalyst (S)-2 on
the variation of the substituents Ar and R, we first pre-
pared a library of quaternary ammonium salts (S)-2Aa–
Di by combining use of 4 aryl substituents with 9 different
dialkylamines. The chiral amplitude of these simplified
phase-transfer catalysts (S)-2Aa–Di was screened efficiently
by using an in situ-generated method from 3,30-diarylated
(S)-binaphthyl dibromide (S)-8 (Ar = H, Ph, 3,5-(CF3)2–
C6H3, 3,4,5-F3–C6H2) in the asymmetric alkylation of
N-(diphenylmethylene)glycine tert-butyl ester 9 (Scheme
2). Thus, reaction of 9 with benzyl bromide (1.2 equiv)
and 50% aqueous KOH in toluene was carried out in the
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Scheme 1. Reagents and conditions: (a) i-PrBr (10 equiv), BuN�HSO4

(20 mol %), KF�2H2O (10 equiv), THF, reflux (95%); (b) (1) Mg(TMP)2

(4 equiv), THF, rt, (2) Br2 (8 equiv), �78 �C to rt (91%); (c) ArB(OH)2

(2.4 equiv), Pd(OAc)2 (5 mol %), PPh3 (15 mol %), K2CO3 (3 equiv),
DMF, 90 �C (57–68%); (d) LiAlH4 (3 equiv), THF, 0 �C to rt (59–82%);
(e) PBr3 (1 equiv), THF, 0 �C (65–87%); (f) R2NH (2 equiv), K2CO3

(1.5 equiv), CH3CN, reflux (34–88%).
presence of 3 mol % of in situ-generated catalysts
(S)-2Aa–Di under argon atmosphere at 0 �C to furnish
benzylation product (R)-10 and the results are shown in
Table 1, which also includes the selected results by using
isolated, optically pure catalyst (S)-2 for comparison.

With bis(3,4,5-trifluorophenyl)-substituted catalyst (S)-
2D, we examined the substituent effect of R by changing
the number of straight alkyl chains as shown in Figure 1.
In the asymmetric benzylation of N-(diphenylmethyl-
ene)glycine tert-butyl ester 9, dimethylammonium salt,
(S)-2Da exhibited very low enantioselectivity, and use of
(CH3(CH2)n�1)2 NH (n P 4) gave uniformly high asym-
metric induction.

With this information at hand, we further screened the
substituent effect of various Ar groups by preparing (S)-
2b catalysts derived from dibutylamine and various 3,30-
diarylated (S)-binaphthyl dibromide (S)-8 as shown in
Figure 2. Among mono-substituted phenyl derivatives, p-
substituted phenyl derivatives generally gave higher enantio-
selectivity than the corresponding m-substituted phenyl
analogues in the asymmetric benzylation of 9. In particu-
lar, p-(trifluoromethyl)phenyl and p-nitrophenyl deriva-
tives exhibited high enantioselectivity (94% ee). These
catalysts are more selective than various disubstituted
Table 1
Screening of in situ-generated catalyst (S)-2Aa–Di in the enantioselective
phase-transfer benzylation of glycine derivative 9a

Amine
(R2NH)

Ar = H
(A)

Ar = Ph
(B)

Ar = 3,5-(CF3)2–
C6H3 (C)

Ar = 3,4,5-F3–
C6H2 (D)

(a) 12% ee 26% ee 1% ee 7% ee
(b) –27% ee 43% ee 93% ee 97% ee

(–13% ee) (60% ee) (91% ee) (99% ee)
(c) –17% ee 58% ee 96% ee 97% ee

(93% ee) (99% ee)
(d) –9% ee 22% ee 44% ee 7% ee
(e) –7% ee 5% ee 31% ee 43% ee
(f) –23% ee 33% ee 41% ee 20% ee
(g) –19% ee 26% ee 78% ee 81% ee

(28% ee)
(h) 22% ee 3% ee 2% ee 6% ee
(i) 15% ee 41% ee 75% ee 83% ee

(87% ee)

a The enantioselectivity in parentheses is obtained by using isolated,
optically pure (S)-2.
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Fig. 1. Effect of the number of straight alkyl chain in (S)-2D on the
enantioselectivity in the asymmetric benzylation of 9.
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phenyl derivatives. Among a variety of aryl substituents,
catalyst (S)-2Db possessing 3,4,5-trifluorophenyl substi-
tuents was found to give the best result in terms of enantio-
selectivity (99% ee).

The chemical behavior of the simplified phase-transfer
catalysts (S)-2Cb, (S)-2Cc, (S)-2Db, and (S)-2Dc was
examined by carrying out asymmetric alkylation of N-
(diphenylmethylene)glycine tert-butyl ester 9, and quite
surprisingly these types of catalysts are found to be by
far the most active catalysts among existing chiral phase-
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Fig. 2. Effect of aryl substituents of (S)-2b (R = Bu) on th
transfer catalysts. Indeed, asymmetric reaction of 9 with
benzyl bromide (1.2 equiv) and 50% aqueous KOH in
toluene was effected in the presence of only 0.01–0.1 mol %
of chiral catalyst (S)-2Db under argon atmosphere at
0 �C for 2–9 h to furnish benzylation product 10 almost
quantitatively with excellent enantioselectivity (98–99%
ee) (entries 1–3). However, use of 0.005 mol % of (S)-2Db

resulted in lowering both the chemical yield and the enantio-
selectivity (entry 4). A similar tendency is also observed in
the case of catalyst (S)-2Dc (entries 5 and 6).

Other selected examples are listed in Table 2. Several
characteristic features of the present alkylations follow:
(1) In contrast to the existing chiral phase-transfer cata-
lysts, the chiral phase-transfer catalysts (S)-2Cb, (S)-2Cc,
(S)-2Db or (S)-2Dc exhibited the high catalytic perfor-
mance (0.05–0.1 mol %), demonstrating the remarkable
efficiency and the practicability of the present approach
for the enantioselective synthesis of a-alkyl-a-amino acids.
(2) By using CsOH�H2O in place of 50% KOH, asymmetric
alkylation of 9 with simple alkyl halide such as ethyl iodide
proceeded smoothly at �20 �C to furnish the correspond-
ing a-alkyl-a-amino acids in good yield with high enantio-
selectivity (entry 21 vs 20).

A typical experimental procedure of catalytic enantio-
selective benzylation of N-(diphenylmethylene)glycine tert-
butyl ester (9) is as follows (Table 2, entry 2): To a mixture
of glycine derivative (9) (88.6 mg, 0.3 mmol) and chiral
catalyst (S)-2Db (0.11 mg, 0.00015 mmol) in toluene
(1.0 mL)–50% KOH aqueous solution (1.0 mL) was added
benzyl bromide (43 lL, 0.36 mmol) dropwise at 0 �C. The
reaction mixture was stirred vigorously at the same temper-
ature for 2 h. The mixture was then poured into water
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Table 2
Catalytic enantioselective phase-transfer alkylation of glycine derivative 9

catalyzed by (S)-2Cb, (S)-2Cc, (S)-2Db, and (S)-2Dca

Entry Catalyst
(mol %)

R–X Cond.
(�C, h)

Yieldb

(%)
% eec

(config)d

1 (S)-2Db (0.1) PhCH2Br 0, 2 99 99 (R)
2 (S)-2Db (0.05) 0, 2 98 99 (R)
3 (S)-2Db (0.01) 0, 9 92 98 (R)
4 (S)-2Db (0.005) 0, 48 51 57 (R)
5 (S)-2Dc (0.05) 0, 4 94 99 (R)
6 (S)-2Dc (0.01) 0, 24 79 98 (R)
7 (S)-2Cb (0.1) 0, 4 89 91 (R)
8 (S)-2Cb (0.05) 0, 5 87 91 (R)
9 (S)-2Cb (0.01) 0, 48 9 90 (R)

10 (S)-2Cc (0.05) 0, 48 85 93 (R)
11 (S)-2Cc (0.01) 0, 48 51 77 (R)
12 (S)-2Db (0.05) CH2@CHCH2Br 0, 3 87 98 (R)
13 (S)-2Db (0.01) 0, 48 62 82 (R)
14 (S)-2Dc (0.05) 0, 5 99 97 (R)
15 (S)-2Cb (0.01) 0, 48 60 83 (R)
16 (S)-2Cc (0.05) 0, 48 59 91 (R)
17 (S)-2Db (0.05) HC„CCH2Br 0, 4 88 98 (R)
18 (S)-2Db (0.01) 0, 48 28 88 (R)
19 (S)-2Cb (0.05) 0, 46 80 88 (R)
20 (S)-2Db (0.1) CH3CH2Ie 0, 72 12 91 (R)
21 (S)-2Db (0.1) CH3CH2Ie,f –20, 1 67 99 (R)

a Unless otherwise specified, the reaction was carried out with 1.2 equiv
of RX in the presence of cat. (S)-2 in 50% aqueous KOH/toluene (volume
ratio = 1:1) under the given reaction conditions.

b Isolated yield.
c Enantiopurity of (R)-10 was determined by HPLC analysis of the

alkylated imine using a chiral column [DAICEL Chiralcel OD] with
hexane–isopropanol as solvent.

d Absolute configuration was determined by comparison of the HPLC
retention time with the authentic sample independently synthesized by the
reported procedure.2

e Use of 5 equiv of alkyl halide.
f Use of CsOH�H2O as base.
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and extracted with ether. The organic extracts were washed
with brine and dried over Na2SO4. Evaporation of sol-
vents and purification of the residual oil by column
chromatography on silica gel (ether/hexane = 1:10 as
eluant) gave the benzylation product (R)-10 (113 mg,
0.294 mmol, 98% yield) as a colorless oil. The enantiomeric
excess was determined by chiral HPLC analysis (DAICEL
CHIRALCEL OD, hexane/isopropanol = 100:1, flow
rate = 0.5 mL/min, retention time; 14.8 min (R) and
28.2 min (S)).
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